

Alain Mortier, Mainframe manager Bertrand Delaporte, TPF System manager

alain.mortier@sncf.fr bertrand.delaporte@sncf.fr



TPFUG DENVER - April 2019

### AGENDA

- SNCF in brief
- Resilient architecture
- Solution components
- Logical corruption protection



# **SNCF IN BRIEF**

#### **History**

• SNCF was born in **1938** 



- Distribution system (mainly high speed passengers bookings) on TPF 1993
- World speed train record (357 mph) 2007
- 2 billionth high speed train passenger 2013
- 30% of high-speed tickets sold on mobile phone **2015**

#### **SNCF Group today**

- 14 million passengers a day worldwide
- Revenues of 33,5 € billion
- 270.000 employees spread across 120 countries















#### **Project MILESTONES**

- 2010 CEO Commitment to improve SNCF DRP
- 2011 Study, architecture definition and implementation
- 2012 Dual site solution set up locally (set up in our main DC) Data replication to be ready for splitting the data center Improved recovery from DB corruption
- 2016 Availability of D/R datacenter (8km as the crow flies)
- 2017 Study and validate the solution Full physical & logical protection
- 2018 Dual Site Implementation



#### **Remote datacenter location**

♦ We did request D/R site to be located 30 km away maximum from our production site...

#### Partners selection for the optical link

A tender was issued to select links between the 2 datacenters.
 ✤ *IBM-Resiliency Services* solution with ADVA FSP3000 multiplexers has been chosen
 ✤ SNCF own fibers has been chosen with 2 different paths (13 and 26 km)









#### Validation by simulation

A prototype was setup using optical fiber coils :





- Latency due to distance was close to the theoretical value (0,25 msec)
- z/TPF system has been resilient to a path failure/switch at ADVA level (lost paths can be recovered with a ZPATH UP for the disks...)

#### Decisions taken at that stage

Project gave us the opportunity for a technological upgrade :

- VTS TS7740 +TS3500 (robot) upgraded to 2 TS7760 in GRID mode to simplify of
- 15k HDDs controllers upgraded to SSD based disk controllers

to simplify our tape replication to recover 0,25 msec latency

30 km

10 km

15 / 30 km













Should a path fail, switching is done at multiplexor level...





#### **Physical installation and tests**

Many different configurations, in particular with *cross* site connected equipment, were tested (e.g. D/R testing scenarios including z13 on one site using VTS/DASD on the other site, restart on D/R site, on Image)

For each various configuration we did carry out performance measurements and hardware failure testing

- ⇒ Latency induced by distance was close enough to theoretical value (speed of light through glass)
- ⇒ We didn't encountered any show stopper

Important considerations as result of testing (none of them linked to the dual site configuration):

- Improved tape availability through GRID
- Improvement of z/TPF tape management that would be much appreciated:
  - Having an easy way to increase the size of the tape status table (RFE 131445)
  - Having an easy way to recover tape drives after hardware failure (path down)
  - Get access to full sense code table documentation
  - Improve interpretation and reaction by z/TPF upon an unknown sense code
- New disks performance!



# **SOLUTION COMPONENTS**





#### **ADVA FSP3000** (9U)

- 2 WDM pairs (1<sup>st</sup> is nominal on EST route, 2<sup>nd</sup> on WEST route)
- RSM/OLM module (Remote Switch Module / Optical Line Monitoring)



#### **FIBERS**

- 14 (8Gb) ISL links between DCX and ADVA
- For production data transfer we do have as many ISL links as of FICON/Fiber Channel links



#### DCX 8510

• 5 virtual fabrics used for flow segregation :

```
z/TPF Production -1- DASD
-2- Tape
-3- Replication (HUR)
Z/VM, z/OS, z/TPF non Production -4- DASD + Tape
-5- Replication (HUR+PPRC)
```



#### **VTS 7760**

• GRID replication (Copy deferred)



### G1500

- FMD disks
- Inbox replication : ShadowImage
- Out-of-Box replication: HUR

TPFUG DENVER – April 2019

Our previous configuration was build around 146GB 15K rpm HDDs

The new HV G1500 are SDD based, Flash Module Drive (FMD) disks

Our production is based on 2 controllers for each site

- Data are replicated asynchronously between sites using HUR
- We do take consistent Shadow Images for local D/R regularly





Data consistency warantee maintained between controllers without freezing I/O, thanks to:

- « At Time Split » for Shadow images
- « Extended Consistency Group » for HUR



After the first tests we can say that we were... **AFRAID** 

How our legacy applications would be impacted with such low response time ? How will VTS handle the RTX logging during batch process ?



Many tests were carried out. (we had to make some improvements to our testing tools suite!)

Major items :

- Code for Nightly File Maintenance had to be adapted
- > We have reduced parallelism for some batch processes (ECB #)
- Our logging is now on 2 tapes (RTX/RTY)

Cutover in Production was done 6 months ago, we did not experience any issue since then





#### Hardware architecture

- 4 FICON zHPF (8GB due to DCX)
- 512 GB Cache memory
- 1 array group (2D+2D) 3.2TB FMD for reservation system data + images
- 1 array group (3D+1P) for HUR journal
- 670 LDEVs defined (102 primes + 102 dupes + 408 shadow images + 58 spares)

#### **FMD** advantages vs SSD

- Hardware inline compression without impact on performance
- Extended life Time of cells : data are written compressed and binary zeros are extremely good candidates for compression and never written as is...





#### Datacollection run concurrently with transactional traffic

|                     | 192* 15K disks R10 (2D+2D) | 4* FMD disks R10 (2D+2D) |
|---------------------|----------------------------|--------------------------|
| Service time        | 1,04 msec                  | 0,17 msec                |
| Device queue (mean) | 14,85                      | 4,82                     |
| LIOCB (mean use)    | 17,54                      | 7,99                     |

#### **Batch duration**

**TPFUG DENVER – April 2019** 

|                      | 192* 15K disks R10 (2D+2D)    | 4* FMD disks R10 (2D+2D)   |
|----------------------|-------------------------------|----------------------------|
| RECOUP               | <b>1h 40min</b><br>(300 ECBs) | <b>22min</b><br>(160 ECBs) |
| NFM                  | 1h 10min                      | 11min                      |
| ULCUs                | <b>28 min</b><br>(200 ECBS)   | 6min<br>(50 ECBs)          |
| METRIX (stats batch) | 1h                            | 5min                       |



### With data replication active



IOs per controller during RECOUP in excess of 120.000 IOPs (vs 25.000 IOPs)





TPFUG DENVER – April 2019



Service Time during RECOUP remain close to 0,3msec (vs 3 to 5 msec)





With data replication active



#### Impact of distance on Service Time



With data replication active



### **SNCF REPLICATION MONITORING & AUTOMATION TOOL**





**TPFUG DENVER – April 2019** 

# LOGICAL CORRUPTION PROTECTION



### **CRUISE** improvement

After having implemented Shadow Image (2012) we did test a CRUISE modification using FDRSC macro. -> Presented at the 2013 TUG: "SNCF Recovery Plan with HDS Shadow image and HUR"

FDRSC does allow to read a TPF record out of an offline ShadowImage target volume.

Following a successful testing, we did ask IBM to provide a CRUISE user exit in order to implement FDRSC. After submitting a RFE, we had the chance to join an "IBM Sponsor user program"...

We also did ask Hitachi Vantara for some FDRSC efficiency improvements...

#### Put15 did bring us APAR PH04143

3 additional user exits for the CRUISE utility:

CASE 13 of dfuex.mac

- where FDRSC can be coded
- CRUUSR\_BEFORE\_ALL\_CHAIN\_CHASES to set environment before to start
- CRUUSR\_AFTER\_ALL\_CHAIN\_CHASES
  - to reset environment



# **LOGICAL CORRUPTION PROTECTION**



### **CRUISE and alternate find**

#### **Business benefits**

- Image validation before using it to restart
- Quick restore of a single corrupted database
- No need to write a utility per database

<text>

Works with classical database having a DBDEF

Our classical RECOUP descriptors have been rewritten in DBDEF



# **LOGICAL CORRUPTION PROTECTION**



**CRUISE SETUP** 

ZFCRU SETUP FUN-CAP REF-FR23RR ALTFIND-YES UEX-ShadowImage2

**ALTFIND** if YES then CASE 13 is called to do the FDRSC

**UEX** allows to specify the volumes to be read (Shadow Image name)

```
> ZFCRU LOCK-VERC820
> ZFCRU SETUP FUN-VER REF-C820 ALTFIND-YES UEXIT-LCOV_SI1 STA-YES
FCRU0000I 11.35.19 PARAMETER TABLE DISPLAY FOR VERC820
FUNCTION VER
...
AUTOMATIC PAUSE NO
ALTERNATE FIND USER EXIT YES
REFERENCE ID C820
USER EXIT TEXT L C O V _ S I 1
FCRU0000I 11.35.19 END OF DISPLAY
> ZFCRU UNLOCK-VERC820
```





- **IBM** for the *Products Sponsor User and Early Release* program
  - Daniel Jacobs and Chris Filachek for their support
- Hitachi Vantara who did assists us throughout the project
  - Gary Spencer who has always been available for us
  - Alain Beauregard for his great technical expertise



TPFUG DENVER – April 2019







TPFUG DENVER – April 2019

# **FLASH DISKS CONTROLLERS**



#### SHADOW IMAGE "AT TIME SPLIT" PROCESS

- All group pairs are split at same time
- Consistency groups are spread across controllers
- No need to freeze IOs to capture image
- Split happens upon first IO after the set time
- Pairs that didn't receive any IOs will be split at time-out





# FLASH DISKS CONTROLLERS

#### EXTENDED CONSISTENCY GROUP PROCESS

- The write timestamp is part of the host I/O and used by HUR to maintain consistency between HUR journals
- HUR regularly checks the latest write time stamp for each journal group of the EXCTG:
  - In Journal group 1, the latest time stamp is 15:00 ٠
  - In Journal group 2, the latest time stamp is 15:02 ٠
  - In Journal group 3, the latest time stamp is 15:03 ٠
  - In Journal group 4, the latest time stamp is 15:04 •
- Takes the oldest time stamp: 15:00
- Then it does allow on all controllers restore of all journal ٠ data that have a time stamp up to 15:00



|   | Journal group 1 | Journal group 2           | Journal group 3           | Journal group 4 |
|---|-----------------|---------------------------|---------------------------|-----------------|
|   | 15:00           | 15:02                     | 15:03                     | 15:04           |
|   | 14:00           | 14:02                     | 14:03                     | 14:04           |
|   | 13:00           | 13:02                     | 13:03                     | 13:04           |
|   | 12:00           | 12:02                     | 12:03                     | 12:04           |
| _ | indicator       | data that is to be restor | and to eccondary data val |                 |

**TPFUG DENVER – April 2019** 

# HOW TO RESTART ON A SHADOW IMAGE

#### One CTK0 defined per database area





#### **Restart process:**

- 1<sup>st</sup> IPL on a GF pack built with the *database area* CTKO wanted
- 2<sup>nd</sup> IPL on the *database area* IPL address
- RTX/RTY tapes can be injected to reduce RPO (Recovery Point Objective)



# **SHADOW IMAGES STRATEGY**

#### A compromise : recent image (SRTO) / older image (crawling corruption)





# Introduction : ShadowImage ShadowImage At Time Split :

- - Suspend of each SI pair based on timestamp
  - Allow multi-controller consistency



# Introduction : ShadowImage • ShadowImage At Time Split :

- - Suspend of each SI pair based on timestamp
  - Allow multi-controller consistency



# Introduction : ShadowImage • ShadowImage At Time Split :

- - Suspend of each SI pair based on timestamp
  - Allow multi-controller consistency



# Introduction : ShadowImage ShadowImage At Time Split :

- - Suspend of each SI pair based on timestamp
  - Allow multi-controller consistency



# Introduction : ShadowImage • ShadowImage At Time Split :

- - Suspend of each SI pair based on timestamp
  - Allow multi-controller consistency



# Introduction : ShadowImage • ShadowImage At Time Split :

- - Suspend of each SI pair based on timestamp
  - Allow multi-controller consistency

